UNIVERSITY OF BUCHAREST FACULTY OF CHEMISTRY DOCTORAL SCHOOL OF CHEMISTRY

MOLECULAR MECHANISMS INVOLVED IN METAL BIOACCUMULATION

Ph. D. THESIS ABSTRACT

Defendant, Lavinia Liliana Ruță (Cocîrlă)

Academic adviser Prof. dr. Ion Baciu

TABLE OF CONTENTS¹

Intro	duction			1	
		ronsideration	ns and literature data	3	
1 41 0	1. Theoretical (consider anoi	is and incrutive data	3	
I.1.	Saccharomyces cerevisiae - euchariot model used as biosorbent				
			s of using Saccharomyces cerevisiae as metal biosorbent	8 9	
		_	revisiae cells used in bioremediation	10	
			sed by Saccharomyces cerevisiae for heavy metal uptake	11	
			ell pretreatment on biosorbtion	16	
			rs that influence the ability of S. cerevisiae cells to uptake		
	metals	1011101	s that initiative the ability of St. colorismic cents to appare	17	
	I.5.1.1.	pH		17	
	I.5.1.2.	r	metal ions concentration	19	
	I.5.1.3.			19	
	I.5.1.4.			20	
	I.5.1.5.		nmental conditions	20	
	I.5.1.6.		c ions characteristics	20	
	I.5.1.7.		n media	21	
			rs that influence the ability of Saccharomyces cerevisiae		
	cells to uptak		is that initiative the ability of succide onlyces coronistae	22	
	I.1.6.1.		f cells	22	
	I.1.6.2.	• •		22	
I.2.	Heavy meta	_		23	
			n the environment	23	
			y metals on the environment	24	
			yy metals from the environment	24	
	-	xicity of hea		25	
			ffect on the S. cerevisiae cells	26	
	I.2.5.1.	•	2000 011 011 01 01 01 01 00 00 00 00 00 0	26	
	I.2.5.2.			27	
	1.2.5.3.		nese	28	
		I.2.5.3.1.	Manganese ion transport in Saccharomyces cerevisiae cells	29	
		1.2.5.3.2.	Phosphate ion transport in Saccharomyces cerevisiae cells	34	
		I.2.5.3.3.	Phosphate-manganese connection: uptake of Mn ²⁺ by		
			yces cerevisiae cells mediated by Pho84p	36	
	1.2.5.4.		•	38	
		I.2.5.4.1.	Transport and homeostasis of Cd ⁺² ions in <i>S. cerevisiae</i>		
		cells	Transport and nonecommon of the following of the following	38	
			Cd ⁺² and antioxidant protection in <i>S. cerevisiae</i> cells	43	
			2.5.4.2.1. Effect on proteins	43	
			2.5.4.2.2. Effect on nucleic acids	44	
	I.2.5.5.			45	
I.3.		1.1	siae cells for increased heavy metal uptake	48	
1.5.	Engineerin	g of S. cerevi	sure cens for increased neavy metal uptake	40	
Part	II. Original co	ntributions		50	
Char	oton II 1 Aggree	nulation of N	Ni ⁺² and Co ⁺² by mutant strains of <i>S. cerevisiae</i>	50	
_			or and Co by mutant strains of 5. cerevisiae	51	
II.1.A. General remarks II.1.B. Results and discussions					
11.1.1	o. Kesuus and	torminations	of toxic concentrations of Me ²⁺ on the wild type strains of	52 52	
	11.1.B.1. De	termmation	of toxic concentrations of vie on the who type strains of	52	

The numbering of the pages is the one from the PhD thesis

	S. cerevisiae					
	II.1.B.2. Selection of mutant S. cerevisiae cells tolerant to high Me ²⁺	53				
	concentrations	33				
	II.1.B.3. Characterization of Me ⁺² tolerant strains	53				
	II.1.B.4. Determination of Me ²⁺ accumulation by mutant cells	55				
	II.1.B.5. Determination of Me ²⁺ intracellular distribution in <i>nir4</i> , <i>nir5</i> and <i>cor5</i>					
	mutants	56				
	II.1.B.6. The <i>nir</i> and <i>cor</i> mutants decrease Me ²⁺ concentration in environment	57				
	II.1.B.7. Conclusions	58				
II 1 C		59				
11.1.C.	Experimental part					
	II.1.C.1.Strains and growth conditions	59				
	II.1.C.2. Evaluation of cell growth in the liquid media supplemented with metallic	60				
	ions					
	II.1.C.3.Cell growth in spot experiments	60				
	II.1.C.4. Mutagenesis and selection of Me ²⁺ resistant mutants cells	60				
	II.1.C.5. Tetrad dissection	60				
	II.1.C.6. Differential extraction of Me ²⁺ from cytosol and vacuoles	61				
	II.1.C.7. Determination of Me ²⁺ concentration accumulated in cells	61				
	II.1.C.8. Determination of cellular protein concentration	62				
Chante	er II.2. Use of "kamikaze" cells for uptake of Mn ²⁺ , Co ²⁺ , Cu ²⁺ and Cd ²⁺ from					
	tic effluents	64				
·	General remarks	65				
	Results and discussion	66				
11.2.D.						
	II.2.B.1. Cellular response of $pmr1\Delta$ cells in presence of heavy metals	66				
	II.2.B.2. Influence of Mn ²⁺ , Cu ²⁺ and Co ²⁺ on $pmr1\Delta$	67				
	II.2.B.3. Influence of Cd ²⁺ on pmr1∆ cells	69				
	II.2.B.4. Ability of $\Delta pmr1$ cells to take up metal ions from synthetic effluents	70				
	II.2.B.5. Conclusions	76				
II.2.C.	Experimental part	78				
	II.2.C.1.Strains, media and growth conditions	78				
	II.2.C.2. The accumulation of heavy metals by cells	78				
	II.2.C.3. Assay of metallic ions accumulated in cells	79				
	II.2.C.4. Assay of cellular proteins	79				
	II.2.C.5. Bioremediation of synthetic effluents using cells in a batch system	79				
	σ · · · · · · · · · · · · · · · · · · ·					
Chante	er II.3. Effect of <i>PHO84</i> overexpression on the metal accumulation	81				
_	General remarks	83				
		84				
п.э.в.	II.3.B.1. S. cerevisiae overexpressing PHO84 gene	84				
		84				
	II.3.B.2. Effect of <i>PHO84</i> overexpresion on the cell growth					
	II.3.B.3. Overexpression of <i>PHO84</i> gene under <i>GAL1</i> promoter control triggers	85				
	increase of heavy metals accumulation in S. cerevisiae cells	89				
	II.3.B.4. Overexpression of <i>PHO84</i> triggers UPR pathway					
	II.3.B.5. Localization of Pho84p in PHO84overexpressing cells	90				
	II.3.B.6. Overexpresion of <i>PHO84</i> in <i>ire1∆</i> cells	91				
	II.3.B.7. Phosphate accumulation in <i>PHO84</i> -overexpressing cells	93				
	II.3.B.8. Overexpresion of <i>PHO84</i> in <i>pmr1∆</i>	94				
	II.3.B.9. Conclusions	97				
II.3.C.	Experimental part	99				
•	II.3.C.1.Strains, media and growth conditions	99				
	II.3.C.2. Plasmids					
	II.3.C.3.Genomic DNA isolation from <i>S. cerevisiae</i> cells					
	II.3.C.4. Amplification of <i>PHO84</i> gene by PCR					
	II.3.C.5. Electrophoresis of PCR products					
	II.3.C.6. Purification of PCR products					
	TI.D.C.O. FULLICATION OF FUN DIQUETS	103				

	II.3.C.7. Cloning PCR products	103			
	II.3.C.8. Transformation of Escherichia coli cells				
	II.3.C.9. Isolation of plasmids from ampicilin rezistent colonies	103			
	II.3.C.10. Purification of DNA sequences from agarose gels	104			
	II.3.C.11. Transformation of <i>S. cerevisiae</i> cells	104			
	II.3.C.12. Obtaining of pPHO84-pGREG505/506 plasmids	105			
	II.3.C.13. Obtaining pPHO84-pGREG600 plasmid	106			
	II.3.C.14. Growth assessments of <i>S. cerevisiae</i> on selective media	107			
	II.3.C.15. Accumulation of metals by cells	107			
	II.3.C.16. Localization of Pho84p-GFP construct	108			
	II.3.C.17. $β$ -galactosidase assay	108			
	II.3.C.18. Phosphate ions assay	109			
	II.3.C.19. Reproducibility of results	110			
	II.3.C.20. Statistic analysis	111			
Chapte cells	er II.4. Calcium signaling mediates the response to cadmium toxicity in S. cerevisiae	113			
	General remarks	115			
II.4.B.	Results and discussion	116			
	II.4.B.1. Yeast cells exposed to high concentration of Cd ²⁺ respond through a transient increase of cytosolic Ca ²⁺	116			
	II.4.B.2. Ca ²⁺ mediated response to Cd ²⁺ ions depends of Ca ²⁺ exogen	117			
	II.4.B.3. [Ca ²⁺] _{cvt} pulses induce by Cd ²⁺ occurs faster Cd ²⁺ uptake	119			
	II.4.B.4. Mutants with defects in Ca ²⁺ homeostasis gene have different tolerance to Cd ²⁺	122			
	II.4.B.5. [Ca ²⁺] _{cyt} regulates Cd ⁺² response	124			
	II.4.B.6. The Cd ²⁺ tolerance/sensitivity of mutants with defects in oxidative stress	125			
	response correlate with [Ca ²⁺] _{cvt} pulse				
	II.4.B.7. Conclusions	128			
II.4.C.	Experimental part	129			
	II.4.C.1.Strains, media, growth conditions and plasmids	129			
	II.4. C. 2. <i>In vivo</i> monitoring of calcium pulse induced by metallic stress	129			
	II.4.C.3.Cell growth assessment on solid media	130			
	II.4.C.4. The uptake of Cd ²⁺ by living cells	130			
	II.4.C.5. Reproducibility of results	131			
	II.4.C.6. Statistic analysis	131			
	er II.5. Vaccinium corymbosum L. (blueberry) extracts exhibit protective action	133			
_	cadmium toxicity in S. cerevisiae cells	105			
	General remarks	135			
II.5.B.	Results and discussions	136			
	II.5.B.1. Vaccinium corymbosum extract protect cells against Cd ²⁺ toxicity	136			
	II.5.B.2. The $yap1\Delta$ hypersensitivity to Cd^{2+} is alleviated by V . $corymbosum$ extract in a dose dependent manner	138			
	II.5.B.3. Cyanidin effect against Cd ²⁺ toxicity in the yeast cells	140			
	II.5.B.4. V. corymbosum extracst and cyanidin protect yeast cells against Cd ²⁺ toxicity	142			
	II.5.B.5. Conclusions	144			
II.5.C.	Experimental part	144			
	II.5.C.1.Preparation of <i>V. corymbosum</i> extracts	144			
	II.5.C.2. Total phenols assay				
	II.5.C.3. Total antocyanidin assay	140 145			
	II.5.C.4. Strains and growth conditions	145			
	II.5.C.5. Growth assessment	145			
	II.5.C.5.1. Growth in liquid media	146			
	II.5.C.5.2. Cells growth spot assay	146			

II.5.C.6.Halo assay					
II.5.C.7.Cell viability	146				
II.5.C.8. Metal accumulation in living cells	146				
II.5.C.9. V. corymbosum extract uptake in S. cerevisiae cells	147				
II.5.C.10. Reproducibility of results	147				
Annex 1	151				
A.1. Obtaining a hyperaccumulator <i>Saccharomyces cerevisiae</i> strain that overexpress the					
PHO84 gene					
A.2. The pGREG505 plasmid map	160				
A.3. The pGREG506 plasmid map	161				
A.4. The pGREG600 plasmid map	162				
A.5. Obtaining a $pmc1\Delta vcx1\Delta$ double null mutant					
Annex 2	163				
Solutions and growth media	163				
Annex 3	168				
Strains					
Bibliography	171				
General conclusions	180				

 $^{^{2}}$ The numbering of tables, figures and references are as in the Ph. D. thesis.

The thesis consists of two main parts: *Theoretical consideration*, which describes the data from the literature on research topics addressed and *Original contributions*, presenting the personal contributions.

The first subchapter presents the general aspects related to the eukaryotic model *Saccharomyces cerevisiae* used as a potential biosorbent. In this part the external and internal factors that affect the ability of *Saccharomyces cerevisiae* to uptake metals from contaminated effluents, particularly aquatic environment are presented.

In the second subchapter I have discussed upon data and information about heavy metals, highlighting the sources of heavy metals in the environment, the impact of heavy metals upon the environment, removal of metals from the environment, heavy metal toxicity and effect of heavy metals on cells of *S. cerevisiae*.

In the third subchapter, ways to engineer *S. cerevisiae* cells to increase capacity to accumulate heavy metals are presented.

The main objective of this thesis was to obtain strains of *Saccharomyces cerevisiae* capable to accumulate significant amounts of potentially polluting metal ions and to develop cellular systems involved in bioremediation of waste water contaminated with heavy metals. This was achieved by studying the molecular mechanisms involved in the bioaccumulation of metal ions.

The work presented in this thesis was focused on five directions of research.

Metal remediation through common physico-chemical techniques is expensive and unsuitable in case of voluminous effluents containing complex organic matter and low metal contamination. Alternative biotechnological approaches received great deal of attention in the recent years. Engineering cell lines that would hyperaccumulate heavy metals can be an invaluable tool in removing such ions from aqueous environments.

In the first direction of research, the production of mutant strains of *S. cerevisiae* resistant to high concentrations of heavy metals that would accumulate heavy metals in a non-toxic manner was attempted. As a result of the studies we obtained 2 strains tolerant to high concentration of Ni²⁺ and one strain tolerant to high concentrations of Co²⁺. These strains had the ability to accumulate metals in vacuoles. An important aspect was the fact that the strains were able to reduce the amount of Me²⁺ from media in a single cycle of growth, which made them good candidates for use in bioremediation processes.

The second direction of research focused on the possibility of using "kamikaze" strains with high potential for bioaccumulation of heavy metals, but killed in the process of bioremediation. The most interesting was the strain defective in the ATP-ase pump Pmr1p (responsible for detoxification of metals by excluding them by cellular secretory pathway). It was shown that null-mutant strain $pmr1\Delta$ had an increased capacity to remove Mn^{2+} , Cu^{2+} , Co^{2+} or Cd^{2+} from synthetic effluents due to the ability to hyperaccumulate these cations. Due to increased metal accumulation, the mutant strains was more efficient than the wild type in removing heavy metals containing 1-2 mM cations, with a selectivity $Mn^{2+} > Co^{2+} > Cu^{2+}$ and also in removing Mn^{2+} and Cd^{2+} from synthetic effluents containing 20-50 μ M cations, with a selectivity $Mn^{2+} > Cd^{2+}$.

It was also found that the $pmr1\Delta$ cells had a tendency to accumulate large amounts of metal ions as compared to cells that normally express the PMR1 gene.

The third direction sought to obtain strains that hyperaccumulate heavy metals, not by deletion of genes involved in cellular detoxification, but rather by overexpression of genes encoding transporters for metal ions. In addition, we studied the effects of the gene overexpression on the ability of cells to bioaccumulate metal ions. Pho84p, the protein responsible for the high-affinity uptake and transport of inorganic phosphate across the plasma membrane, is also involved in the low-affinity uptake of heavy metals in the *Saccharomyces cerevisiae* cells.

This part of the thesis demonstrated that under metal ions excess, yeast cells overexpressing PHO84 gene acquire an increased capacity to bioaccumulate Mn^{2+} , Cu^{2+} or Co^{2+} and in some genetic background cells becomes hyperaccumulators. As PHO84 overexpression triggered the Ire1p-dependent unfolded protein response, abundant plasma membrane Pho84p could be achieved only in $ire1\Delta$ cells (lacking the gene that encodes a transmembranare kinase which transmit the signal about unfolded proteins to RE). Under environmental surplus, PHO84 overexpression augmented the metal accumulation by the wild type, accumulation that was exacerbated by the IRE1 deletion. The $pmr1\Delta$ cells (lacking the gene that encodes the P-type ATPase ion pump that transports Ca^{2+} and Mn^{2+} into the Golgi), hyperaccumulated Mn^{2+} even from normal medium when overexpressing PHO84, a phenotype which is rather restricted to metal-hyperaccumulating plants.

For a better understanding of the mechanisms involved in cell survival and adaptation to stress caused by heavy metals, in the fourth direction of research the involvement of Ca²⁺ in signaling the cell exposure to high concentrations of metals was studied. Using the *S. cerevisiae* cells which expressed a transgenic Ca²⁺-sensitive photoprotein it was found that among the metals tested, only Cd²⁺ surplus was signaled by calcium.

The yeast cells responded through a sharp increase in cytosolic Ca²⁺ when exposed to Cd²⁺, and to a lesser extent to Cu²⁺, but not to Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺, or Hg²⁺. The response to high Cd²⁺ depended mainly on external Ca²⁺ (transported through the Cch1p/Mid1p channel), but also on vacuolar Ca²⁺ (released into the cytosol through the Yvc1p channel). The adaptation to high Cd²⁺ was influenced by perturbations in Ca²⁺ homeostasis. The data obtained in this part of the thesis indicate that the presence of high concentrations of Cd²⁺ in the environment is signaled through immediate and sudden pulses of cytosolic Ca²⁺. Apparently, sudden and sharp pulses of Ca²⁺ allow the adaptation to high Cd²⁺, while the absence of [Ca²⁺]_{cyt} signaling or broad pulses and lingering [Ca²⁺]_{cyt} are responsible for Cd²⁺ hypersensitivity.

Since some cell strains that were shown to be hyperaccumulators of heavy metals die due to the toxicity of those metals, in a fifth direction of research, we studied the using of plant antioxidants to protect cells from the stress induced by heavy metals.

Vaccinium corymbosum L. are a rich source of antioxidants and their consumption is believed to contribute to food-related protection against oxidative stress. Four varieties of blueberries were used in the study, and it was found that the extracts with high content of total anthocyanidins exhibited significant protective effect against the toxicity of cadmium and H₂O₂. Both the blueberry extracts and pure cyanidin exhibited protective effects against cadmium in a dose-dependent manner, but without significantly interfering with the cadmium accumulation by the yeast cells. Thus, it was proved that the extract of Vaccinium corymbosum berries has a protective effect against S. cerevisiae cells exposed to Cd²⁺ ions, one of the most toxic metals studied. The results imply that the blueberry extracts might be a potentially valuable food supplement for individuals exposed to high cadmium.

List of published articles:

- 1. **Ruță L.L.**, Popa V.C., Nicolau I., Daneț A.F., Iordache V., Neagoe A.D., Fărcășanu I.C., FEBS Letters, 2014; 588, 3202–3212
- Oprea E., Ruță L.L., Nicolau I., Popa C.V., Neagoe A.D., Fărcășanu I.C., Food Chem. 2014;152:516-21
- 3. Ofițeru A.M., **Ruță L.L**., Rotaru C., Dumitru I., Ene C.D., Neagoe A., Fărcășanu I.C., Appl Microbiol Biotechnol. 2012; 94 (2):425-35
- 4. **Ruță** L, Paraschivescu C, Matache M, Avramescu S, Fărcășanu IC, Appll. Microbiol. Biotechnol, 2010:85 (3), 763-771
- 5. M.Simion, L. Ruță, C. Mihăilescu, I.Kleps, A. Bragaru, M. Miu, T.Ignat, I. Baciu, Superllatice and Microstructures, 2009;45, 69-76.
- 6. Fărcășanu I.C, Paraschivescu C., **Ruță L.L**., Oprea E., Avramescu S., Revue Roumaine de Chimie, 2008; 53(8): 647–651
- 7. Fărcășanu I.C., Oprea E., Paraschivescu C., **Ruță L.L.,** Avramescu S., Revista De Chimie, 2008; 59 (9):1041-1044