

Synthesis of Enantiopure Building Blocks for Biologically Active Compounds by Enzyme Catalysis

Optimization of reaction conditions for
increased enantioselectivity and activity

Elisabeth Egholm Jacobsen

Department of Chemistry
Norwegian University of Science and Technology
N-7491 Trondheim

Agenda lecture 1

- Chirality and enantiopurity of molecules
- Need for enantiopure biologically active compounds
- Biocatalysis in industry
- Theory of biocatalysis
- Enzyme catalyzed kinetic resolutions of secondary alcohols and halohydrins
- Improvement of enantioselectivity
- Enantioselective enzyme inhibition
- Asymmetrization of prochiral diesters

Chiral Nature and chiral molecules

Cheir: Greek for hand

Hands are mirror images of each other but not alike

A molecule with a C-atom (other atoms also) with 4 different groups is chiral.
It exists as two different forms: **enantiomers**.

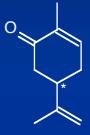
Enantiopure: Only one of the enantiomers, %ee 99

The American Food and Drug Administration (FDA) considers the wrong enantiomer as an impurity and demands for pure enantiomers as marketed drugs, not racemates

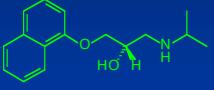
University of Bucharest
08.10.2019

3

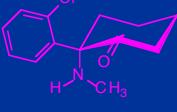
Enantiomers interact differently with other chiral molecules (F. inst. enzymes, receptors)


Proteins are made up of 20 amino acids, 19 are chiral

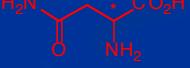
University of Bucharest
08.10.2019


4

Significance of chirality for biological activity


Eudismic ratio (ER): Ratio of the one enantiomer more active than the other

(S)-carvone, caraway
(R)-carvone, spearmint

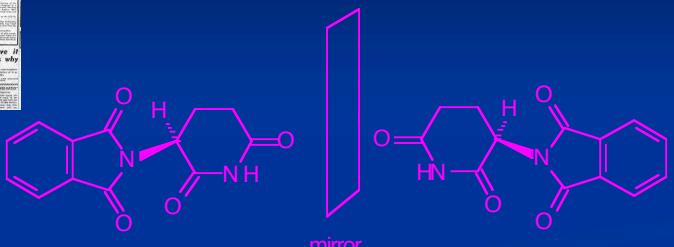

(S)-Propranolol, ER = 130

(S)-Ketamine
(S)-anesthetic
(R)-halucinogen

exo-brevicomin

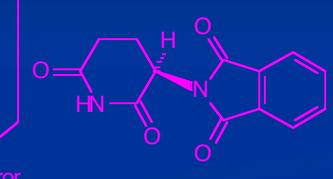
(S)-Asparagine, bitter
(R)-Asparagine, sweet

(1R, 5S, 7R)-exo-Brevicomin is produced by females of the pine beetle *Dendroctonus brevicomis* as male attractant


University of Bucharest
08.10.2019

5

Thalidomide


THALIDOMIDE NIGHTMARE
World's legacy of tragedy

mirror

(S)-enantiomer of thalidomide

(R)-enantiomer of thalidomide

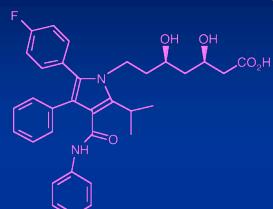
Racemic Thalidomide- 50 % of each- was used as a sedative by pregnant women in the 1960's. The (S)-enantiomer caused the deformed babies.

University of Bucharest
08.10.2019

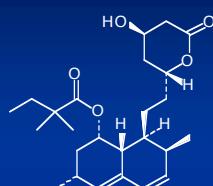
6

Top 10 medicines in Norway 2006

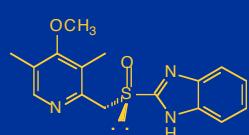
Rank 2006 (2005)	Medicine (Single enantiomer)	Molecule	Sales Mill. NOK	Main indication
1 (2)	Enbrel	Etanercept (TNF Fusion protein)	329	Rheumatoid arthritis
2 (1)	Lipitor	Atorvastatin	278	High cholesterol
3 (4)	Nexium	Esomeprazole	253	Gastric ulcer
4(3)	Seretide	Salmeterol & Fluticasone	252	Asthma
5 (5)	Remicade	Infliximab (Immunoglobulin G)	196	Rheumatoid arthritis Psoriasis
6 (6)	Zyprexa	Olanzapine	153	Schizophrenia
7 (7)	Symbicort	Formoterol & Budesonide	141	Asthma
8 (15)	Humira	Adalimumab (Immunoglobulin G1)	125	Rheumatoid arthritis
9 (8)	Cozaar Comp	Lozartan & diuretic	121	High blood pressure
10 (9)	Metoprolol	Metoprolol (sold as racemate)	121	High blood pressure


University of Bucharest

University of
08.10.2019


The Norwegian Association of Pharmaceutical Manufacturers - I MI

7


Chiral medicines marketed as pure enantiomers

Lipitor® active molecule atorvastatin

Zocor® active molecule simvastatin

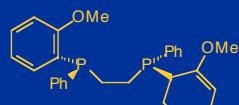
Nexium® active molecule esomeprazole

Single enantiomer compounds are preferred by FDA because they exhibit lower toxicity and higher efficacy. For pharmaceutical industry this may facilitate patent life extensions. However, higher manufacturing costs may occur.

University of Bucharest
08.10.2019

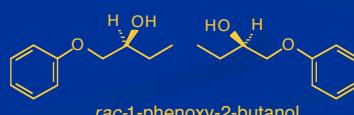
Syn^{CO}Zymes®

Synmax


8

How to provide enantiopure molecules? (Achiral synthesis gives both enantiomers)

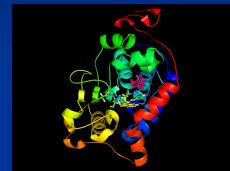
1. Chiral natural products: -carbohydrates, terpenoids, hydroxy acids, alkaloids..



(S)-Phenylalanine

(R,R)-DIPAMP

2. Asymmetric synthesis: -chirality from substrate, chiral auxilliary, reagent or catalyst


3. Resolution of racemate: -via diastereomeric derivatives or kinetic

University of Bucharest
08.10.2019

9

Why Biocatalysis ?

- Enzymes are chiral molecules!
 - Selectivity
 - chemo
 - regio
 - stereo
- Both asymmetric synthesis and resolution
 - Taylor made new enzyme catalysts
 - Green Chemistry

University of Bucharest
08.10.2019

10

Industrial acrylamide process

$\text{CH}_2 = \text{CH} - \text{C}\equiv\text{N} \xrightarrow{\text{H}_2\text{O}} \text{CH}_2 = \text{CH} - \text{C}(=\text{O})\text{NH}_2$

Non-biological process: Difficult, Cu catalysis, not pure product
 Whole cells from *Brevibacterium*, *Pseudomonas*, *Rhodococcus*
 Pure product, > 99% yield., Nitto Japan > 30 000 tonnes/year

Traditional process

```

    graph TD
      A[Acrylonitril, water] --> B[Grow cells]
      B --> C[Hydratise at 100 °C]
      C --> D[Remove copper]
      D --> E[Remove unreacted starting material]
      E --> F[Decolorise]
      F --> G[Remove Cu-ions]
      G --> H[Acrylamide]
      B --> I[Hydratise at 10 °C]
      I --> J[Remove cells]
      J --> K[Decolorise]
      K --> L[Acrylamide]
  
```

Green Chemistry

University of Bucharest
 08.10.2019

J. Chem. Education, 76, 1999, 1658-1660

11

Biocatalytic process for Aspartame

150-200 sweeter than sucrose, discovered by Searle 1965, approved by FDA 1981, US patent (NutraSweet) expired 1992. Prod. by Holland Sweetener Company

4 Stereoisomers, only one is sweet, the others are bitter

Maleic anhydride $\xrightarrow{\text{Aspartase}}$ **Aspartame**

Aspartase converts Maleic anhydride to Aspartame. Aspartame is a dipeptide composed of Aspartic acid and Phenylalanine.

Thermolysin catalyzes a **Stereospecific reaction** on the Aspartame. The reaction involves the conversion of the Aspartame into **L- α -Asp-L Phe methyl ester** and a **Salt that crystallizes**.

Racemization of the Aspartame is also shown, leading to a **racemic (2 moles)** mixture of the product.

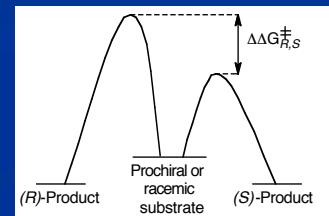
Coca-Cola Zero Sugar cans are shown in the background, indicating the commercial use of Aspartame.

University of Bucharest
 08.10.2019

12

Resolution or asymmetric synthesis?

Asymmetric synthesis
 Substrate: prochiral or meso-compound
 May give 100% yield and 100% ee,
 but is it the right enantiomer?
 Enantiomeric excess independent
 of degree of conversion


$$\Delta\Delta G^\# = -RT\ln k_R/k_S, \text{ F. inst.} = 7.3 \text{ kJ/mol, } k_R/k_S = 19 = 95/5, \text{ ee} = 90 \text{ \%}$$

Kinetic resolution
 Substrate: racemic mixture
 Maximum 50% of each enantiomer
 Enantiomeric excess depends on degree of conversion

$$\Delta\Delta G^\# = -RT\ln E, \text{ F. inst.} = 7.3 \text{ kJ/mol, } E = 19$$

University of Bucharest
 08.10.2019

13

Kinetic resolution Enantiomeric Ratio, E

E : Ratio of the specificity constants (k_{cat}/K_M) of the enzyme for the two enantiomers
 An E -value of 50: One enantiomer reacts 50 times faster than the other

$ee = \text{enantiomeric excess}$

$ee \% = \frac{ee_p - ee_s}{ee_p + ee_s} \times 100$

$\Delta\Delta G^\# = -RT\ln E$

Calculation of E :

$$E = \frac{\ln \frac{ee_p(1 - ee_s)}{(ee_p + ee_s)}}{\ln \frac{ee_p(1 + ee_s)}{(ee_p + ee_s)}}$$

At the start of the reaction $ee_s = 0, ee_p = 90 \text{ \% (i.e. } 95 : 5, 19 : 1, E = 19)$

University of Bucharest
 08.10.2019

14

Lipase B from *Candida antarctica*

Fungus found in Antarctica

317 amino acids

33 kD

Novozym 435
Immobilized on resin

Novozym 525 F
Pure protein

Novozym CALB L
Pure protein in water

University of Bucharest
08.10.2019

15

Secondary alcohols and halohydrins

Synthesis of racemic substrates for kinetic resolutions

$\text{O} \text{---} \text{C}(\text{OR}_2) \text{---} \text{R}_1 \xrightarrow{\text{R}_1\text{MgBr}} \text{R}_1 \text{---} \text{CH}(\text{OH}) \text{---} \text{OR}_2 \xleftarrow{\text{NaOH}} \text{R}_1 \text{---} \text{C}(\text{OR}_2) \text{---} \text{O} + \text{R}_2\text{OH}$

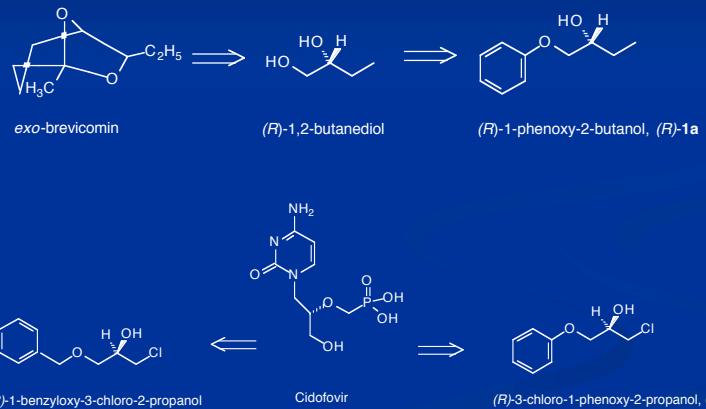
1a-4a

1a $\text{R}_1 = \text{CH}_3, \text{R}_2 = \text{Ph}$
2a $\text{R}_1 = \text{CH}_2\text{CH}_3, \text{R}_2 = \text{Ph}$
3a $\text{R}_1 = \text{CH}_2\text{CH}_2\text{CH}_3, \text{R}_2 = \text{Ph}$
4a $\text{R}_1 = \text{CH}_3, \text{R}_2 = \text{CH}_2\text{Ph}$

Yields: 24-50 %
Purity: 96-100 %

$\text{O} \text{---} \text{C}(\text{OR}_2) \text{---} \text{R}_1 \xrightarrow[\text{AcOH}]{\text{LiBr}} \text{R}_1 \text{---} \text{CH}(\text{OH}) \text{---} \text{OR}_2 \xleftarrow{\text{Li}_2\text{CuCl}_4} \text{R}_2\text{O} \text{---} \text{C}(\text{OR}_2) \text{---} \text{O}$

5a-6a

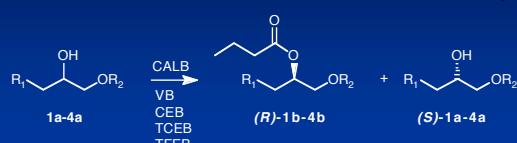

5a $\text{R}_1 = \text{Br}, \text{R}_2 = \text{Ph}$
6a $\text{R}_1 = \text{Cl}, \text{R}_2 = \text{Ph}$

Yields: 85 %
Purity: 99 %

University of Bucharest
08.10.2019

16

Building blocks for pheromones and pharmaceuticals

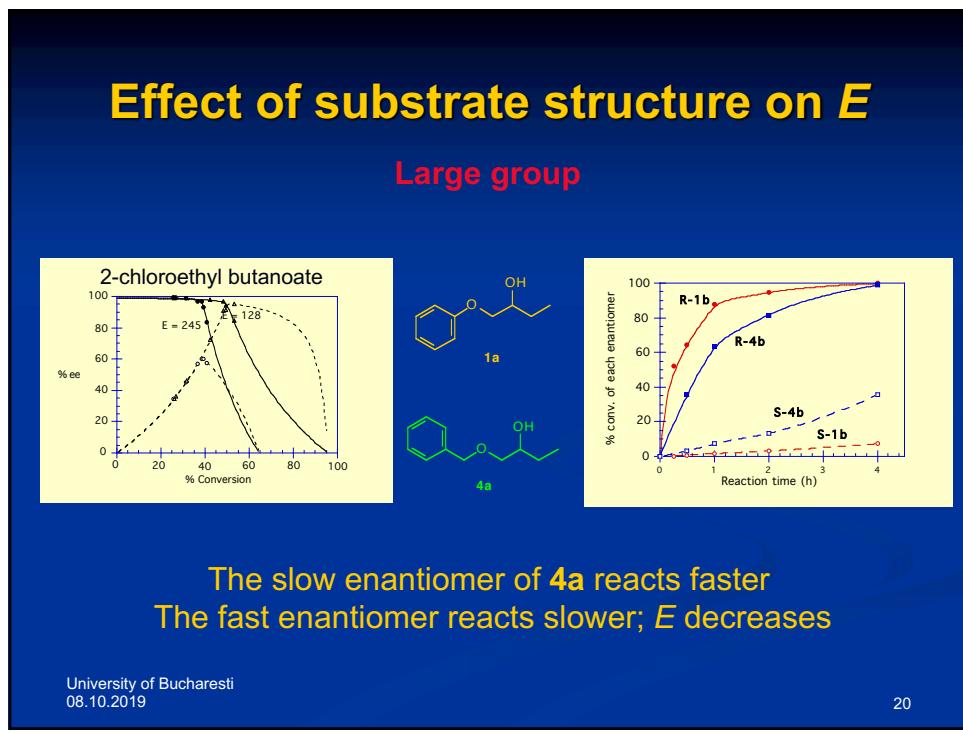
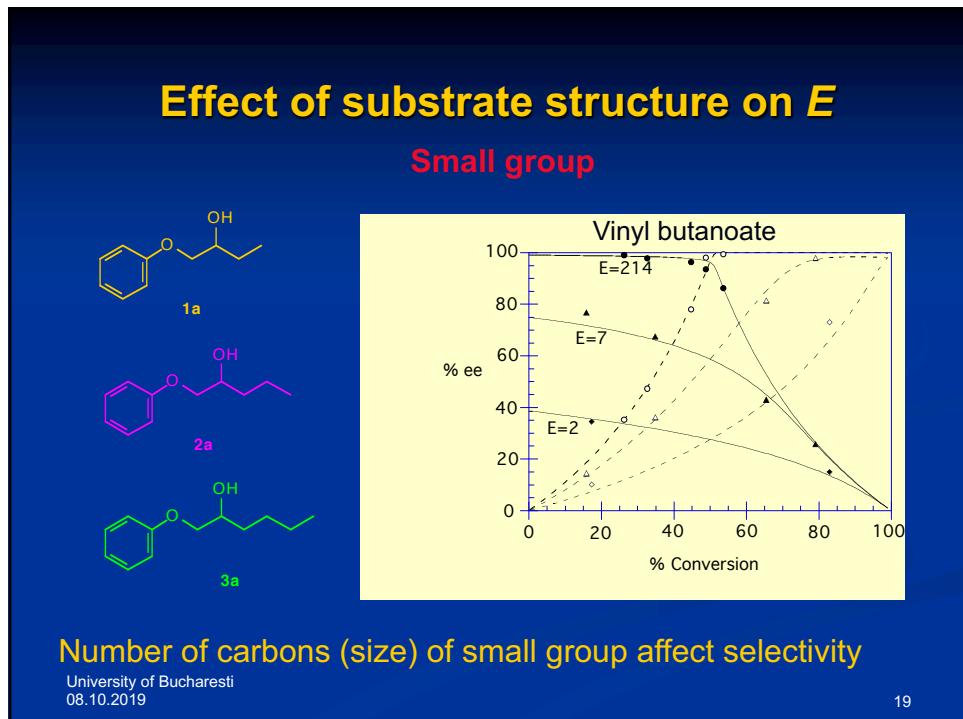


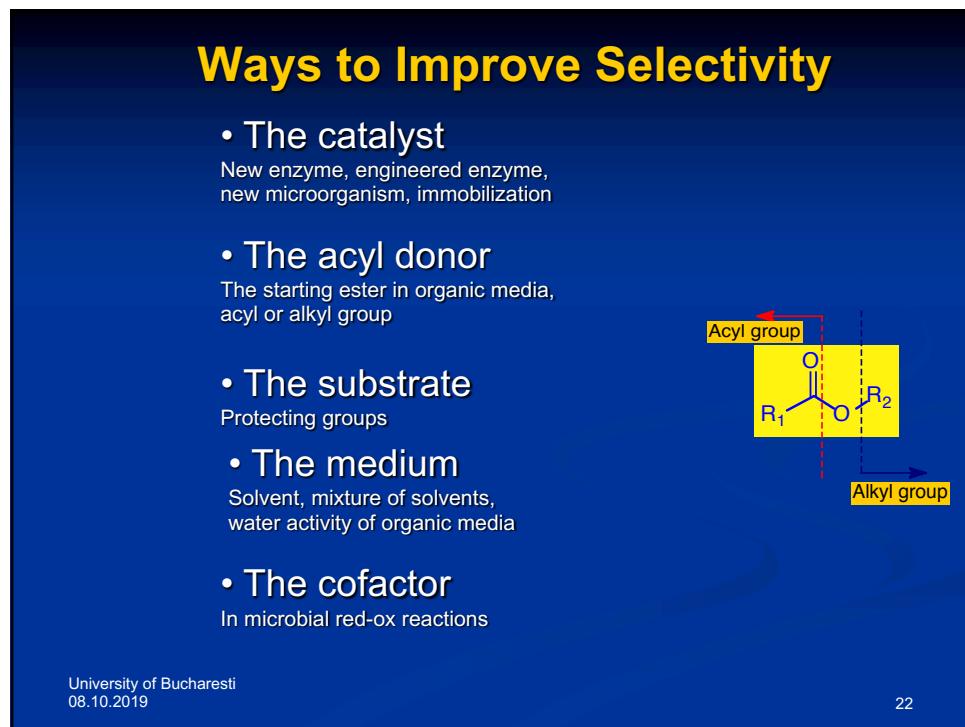
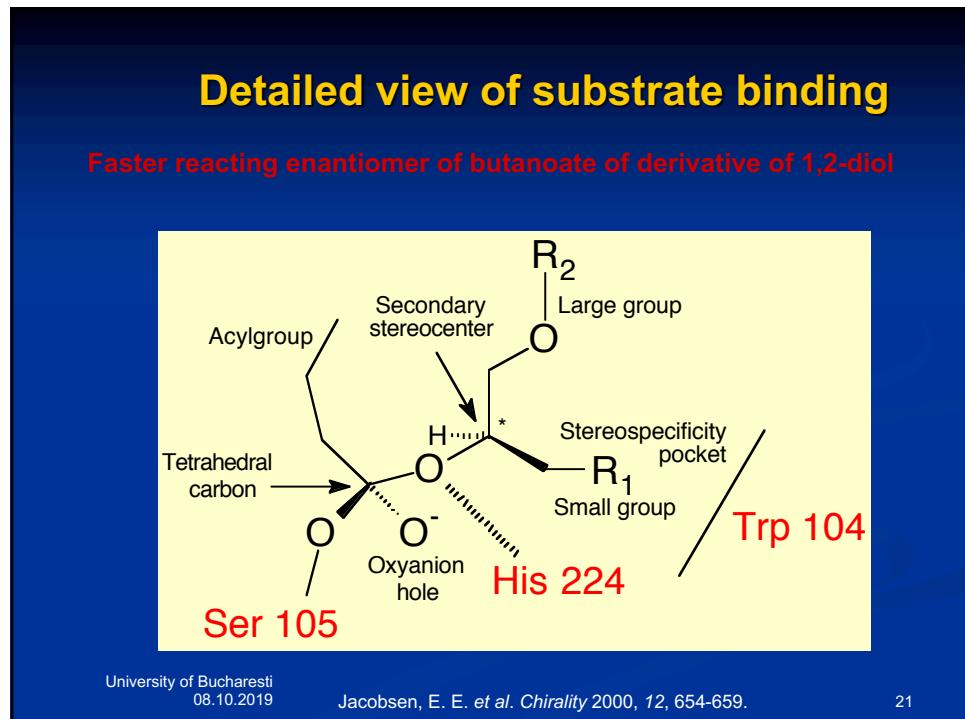
University of Bucharest
08.10.2019

17

Transesterification reactions of 1a-4a

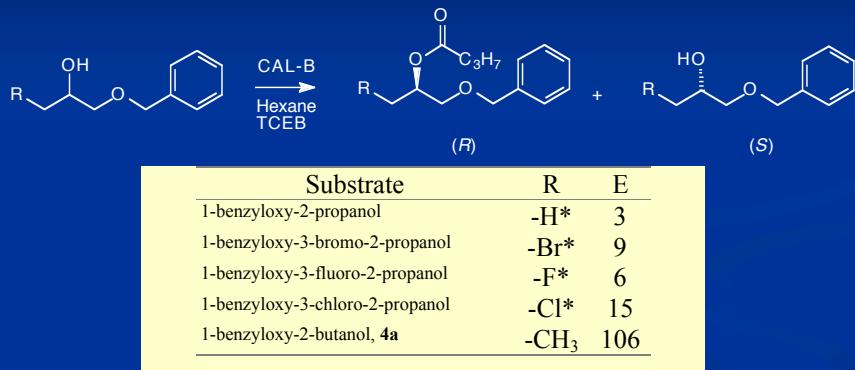
Effect of acyl donor on *E* and K_{eq}



1a $R_1 = \text{CH}_3, R_2 = \text{Ph}$
2a $R_1 = \text{CH}_2\text{CH}_3, R_2 = \text{Ph}$
3a $R_1 = \text{CH}_2\text{CH}_2\text{CH}_3, R_2 = \text{Ph}$
4a $R_1 = \text{CH}_3, R_2 = \text{CH}_2\text{Ph}$

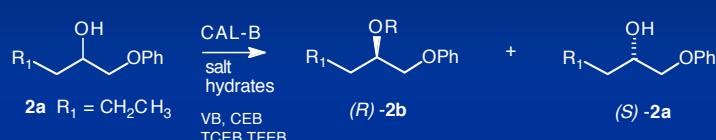


Substrate	$\text{CH}_2=\text{CH}-\text{CH}_2-\text{O}-\text{C}(=\text{O})-\text{CH}_2$		$\text{Cl}-\text{CH}_2-\text{O}-\text{C}(=\text{O})-\text{CH}_2$		$\text{Cl}-\text{CH}_2-\text{O}-\text{C}(=\text{O})-\text{CH}_2-\text{Cl}$		$\text{F}_2\text{C}-\text{CH}_2-\text{O}-\text{C}(=\text{O})-\text{CH}_2$	
	<i>E</i>	K_{eq}	<i>E</i>	K_{eq}	<i>E</i>	K_{eq}	<i>E</i>	K_{eq}
1a	214	>10000	245	0.27	293	4.79	233	5.72
2a	7	>10000	21	0.63	31	6.35	40	>10000
3a	2	>10000	1.7	1.02	2.1	>1000	2.5	0.40
4a	13	>10000	84	0.41	106	6.59	128	3.33

University of Bucharest
08.10.2019

Jacobsen, E. E. et al. *Chirality* 2000, 12, 654-659.


18

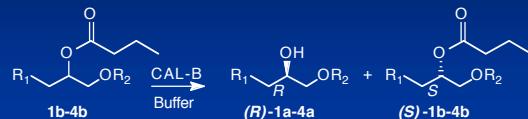
Effect of substrate structure on *E*


Halogens in small group

Electronegative properties of small group affect selectivity

Improving enantioselectivity I

The water activity (*a*_w) in hexane



Acyl donor	<i>a</i> _w ≈ 0	<i>a</i> _w = 0.18	<i>a</i> _w = 0.39	<i>a</i> _w = 0.65
VB	7	12	15	16
CEB	21	20	17	Rx. stopped
TCEB	31	30	32	9
TFEB	40	23	19	Rx. stopped

Increased *E* by increased *a*_w in resolution of **2a** with VB in hexane

Improving enantioselectivity II

Hydrolysis of ester in buffer

1b $\text{R}_1 = \text{CH}_3, \text{R}_2 = \text{Ph}$
 2b $\text{R}_1 = \text{CH}_2\text{CH}_3, \text{R}_2 = \text{Ph}$
 3b $\text{R}_1 = \text{CH}_2\text{CH}_2\text{CH}_3, \text{R}_2 = \text{Ph}$
 4b $\text{R}_1 = \text{CH}_3, \text{R}_2 = \text{CH}_2\text{Ph}$

Substrate	Phosphate buffer conc.	<i>E</i>	Conv. / rx. time
1b	0.05 M, pH 7.00	158	51 % / 24 h
2b	0.1 M, pH 7.00	326	46 % / 96 h
3b	0.1 M, pH 7.00	No reaction	-
4b	0.1 M, pH 7.00	600	49 % / 8 h

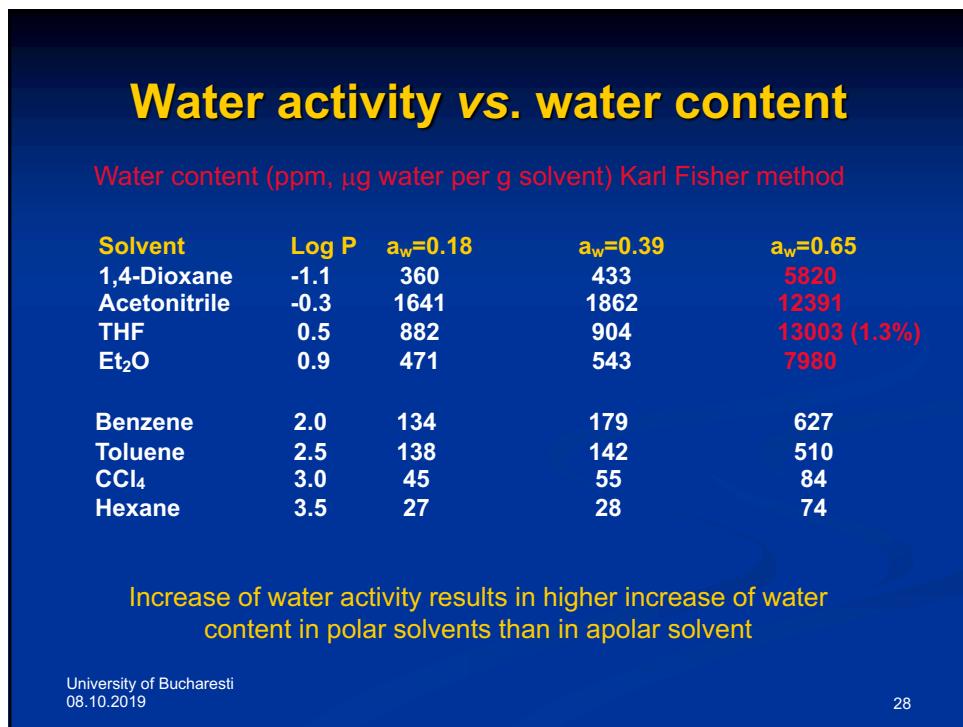
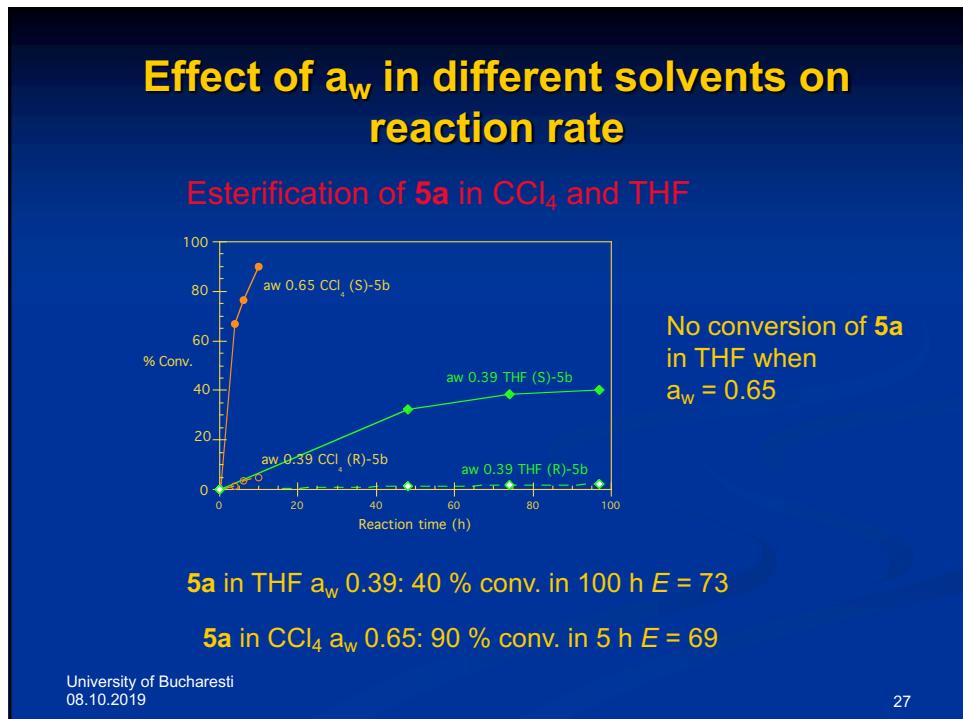

Increased *E* in hydrolysis of corresponding esters of **2** and **4**

University of Bucharest

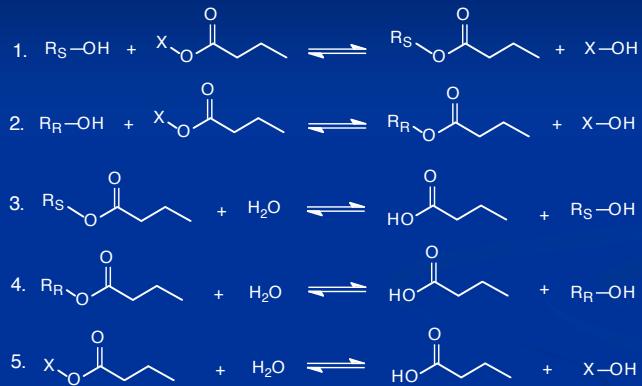
08.10.2019

25

Effect of water activity in different solvents on *E*



Solvent	Log P	$a_w = 0.18$	$a_w = 0.39$	$a_w = 0.65$
1,4-Dioxane	-1.1	25	47	conv. <1%
Acetonitrile	-0.3	40	69	conv. <1%
THF	0.5	30	73	conv. <1%
Et_2O	0.9	23	24	conv. <1%
Benzene	2.0	22	31	48
Toluene	2.5	35	42	52
CCl_4	3.0	52	63	69
Hexane	3.5	16	25	55

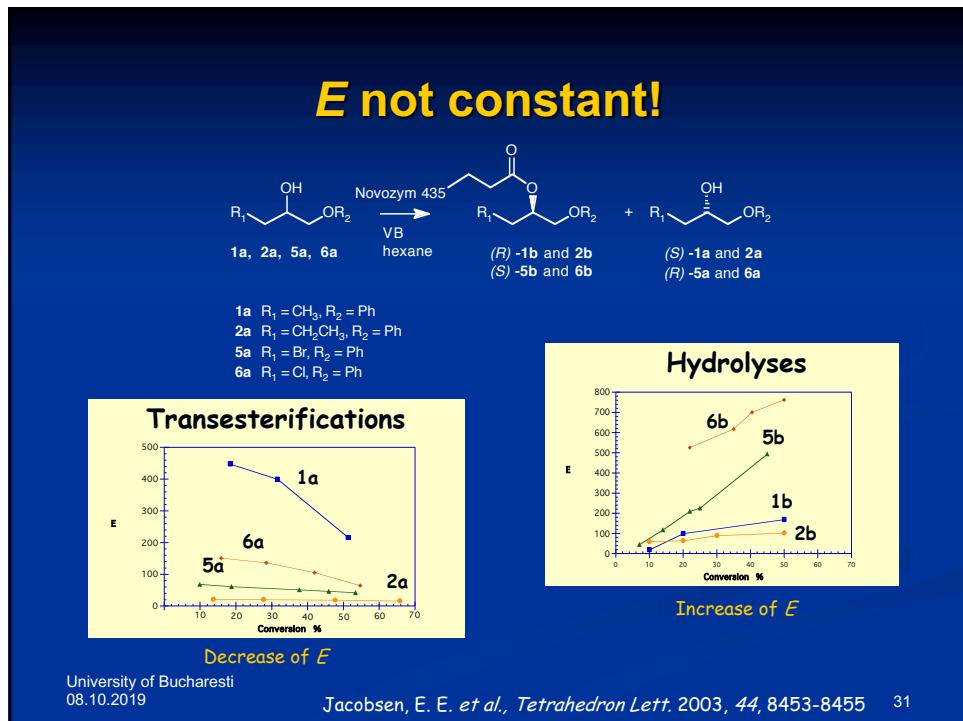
Improved selectivity by increased water activity


University of Bucharest
08.10.2019

Jacobsen, E. E. and Anthonsen, T. *Can. J. Chem.* **2002**, 80, 577-581

26

Equilibria of transesterifications



Ester products and acyl donors are hydrolyzed when water content is high

Synthesized enantiopure compounds

Compound	ee, %	Concentration/solvent	Optical rotation
(<i>R</i>)-1a	96	c 1.37, CHCl_3	$[\alpha]_D^{25} = -6.57$
(<i>R</i>)-1a (ref.)	99	c 1.40, CHCl_3	$[\alpha]_D^{25} = -6.44$
(<i>S</i>)-1a	99	c 1.40, CHCl_3	$[\alpha]_D^{25} = +5.84$
(<i>S</i>)-1b	99	c 1.50, CHCl_3	$[\alpha]_D^{25} = -6.57$
(<i>R</i>)-2a	99	c 1.14, CHCl_3	$[\alpha]_D^{30} = -12.25$
(<i>R</i>)-2a (ref.)	99	c 1.17, CHCl_3	$[\alpha]_D^{20} = -6.86$
(<i>R</i>)-3a (ref.)	99	c 0.90, CHCl_3	$[\alpha]_D^{25} = -5.55$
(<i>R</i>)-4a	94	c 2.95, EtOH	$[\alpha]_D^{25} = +4.74$
(<i>S</i>)-4a	100	c 2.20, CHCl_3	$[\alpha]_D^{25} = +4.03$
(<i>S</i>)-4a	100	c 2.20, EtOH	$[\alpha]_D^{25} = -4.03$
(<i>S</i>)-4a (ref.)	100	c 4.50, EtOH	$[\alpha]_D^{25} = -4.35$

Enantiopreference of CAL-B: *R*-enantiomer

Possible reasons for change of *E*-value

- Calculation of *E* assumes that experimental conditions do not change during reaction
 - hydrolyses and transesterifications:
Decrease in substrate concentration, increase in product concentration
- Enantioselective inhibition by enantiopure esters?
Increasing amount of *(R)*-ester in transesterification: decrease of *E*
Decreasing amount of *(R)*-ester in hydrolysis: increase of *E*
- Enantioselective inhibition by *(R)*-alcohol?
Decreasing amount of *(R)*-alcohol in transesterification: decrease of *E*
Increasing amount of *(R)*-alcohol in hydrolysis: increase of *E*
- Influence of immobilization?
Compare with pure enzyme preparation

Addition of enantiopure esters

Esterification reaction of **1a**:

- High starting selectivity ($E=450$), not much ester formed
- Low end selectivity ($E=50$), much *R*-ester formed

Start of reaction:

Addition of *(R)*-**1b** (faster) to the transesterification reaction of **2a**
No effect on E-value

Addition of *(R)*-**6b** (slower) to the transesterification reaction of **1a**
No effect on E-value

Conclusion : No inhibition by the esters

R-alcohols interact with enzyme

Saturation Transfer Difference-NMR studies:

Enzyme preparation: Novozym 525 F from Novozymes AS, freeze dried

Additives: (*R*) and (*S*)-2-methyl-1,4-butanediol, mw 104.05 g/mol, Merck

NMR Sample I: (*R*)-2-methyl-1,4-butanediol in 0.5 mL D₂O and pure enzyme

Result: Shows interaction with enzyme

NMR Sample II: (*S*)-2-methyl-1,4-butanediol D₂O with pure enzyme

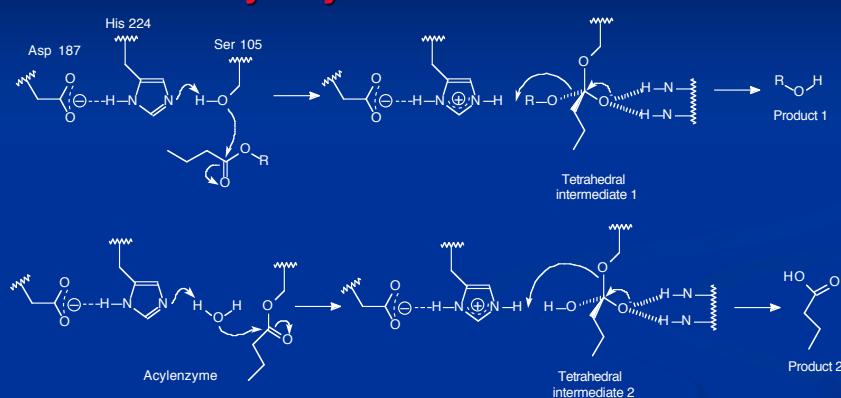
Result: Shows no interaction with enzyme

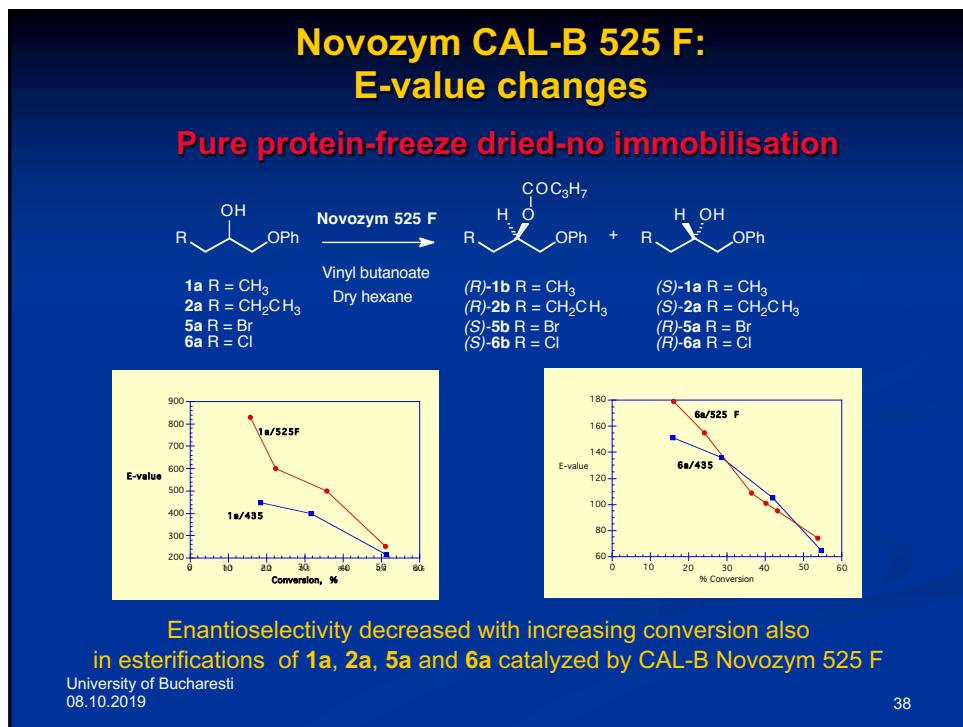
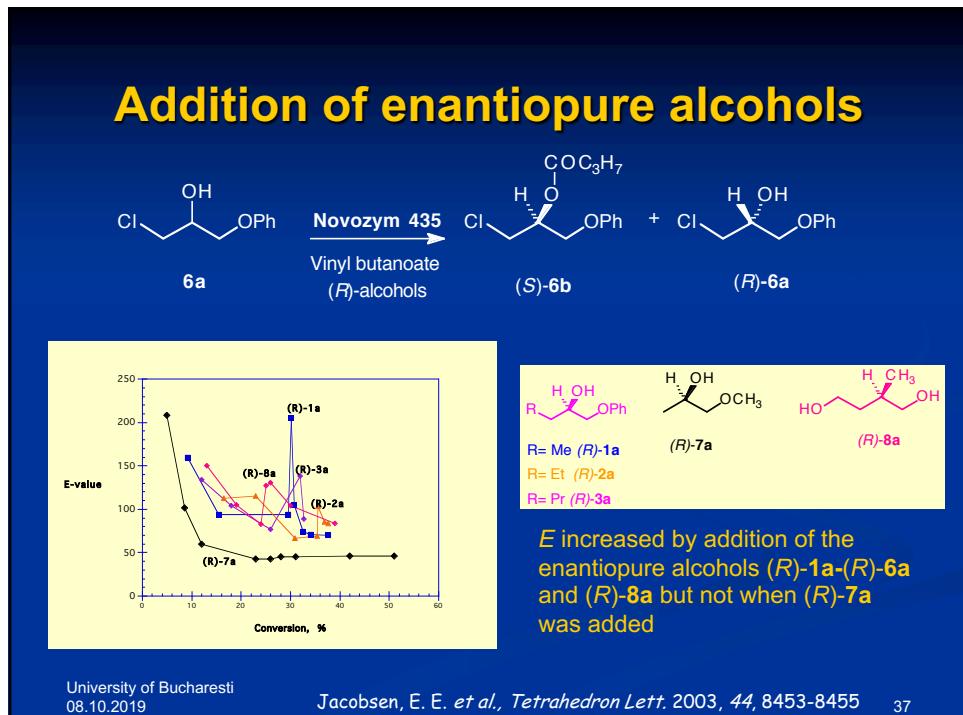
Further experiments are under investigation

How can the *R*-alcohols increase selectivity in CALB?

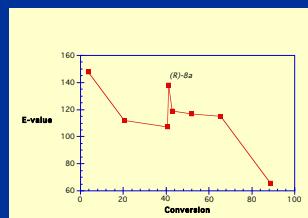
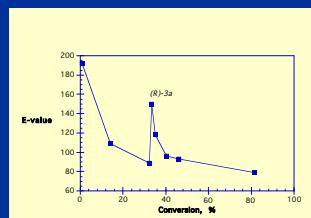
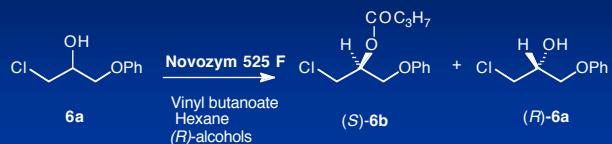
- Possible allosteric site (another site than active site) on the surface of CALB

- Binding of the *R*-alcohols make the active site more suited for the faster reacting enantiomer giving enhanced selectivity


However, the added enantiomers from our experiments are also esterified by time, indicating that the allosteric binding is reversible.

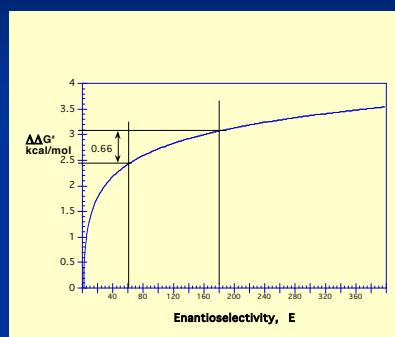


Challenge: to make an irreversible ACTIVATOR

CAL-B catalysis mechanism




Hydrolysis of racemic ester

Change of amounts of different substances in the reaction mixture will affect the results

Addition of enantiopure alcohols in CAL-B 525 F reactions


Enantioselectivity increased by addition of (*R*)-alcohols also in esterifications of **6a** catalyzed by CAL-B Novozym 525 F

University of Bucharest
08.10.2019

Jacobsen, E.E, Andresen, L.S. and Anthonsen, T. *Tetrahedron: Asymmetry* 16 (2005) 847–850

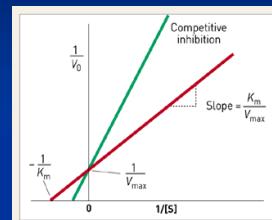
39

Decrease in E , difference in $\Delta G^\#$

A decrease of E from 180-60 is due to a decrease of ΔG^\ddagger of 0.66 kcal/mole

Change in enzyme conformation due to allosteric effect?

University of Bucharest
08.10.2019

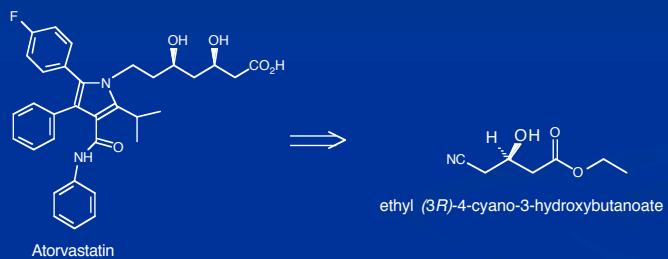

40

Ways to reveal an allosteric effect

Enzyme kinetics:

$$V_0 = \frac{V_{\max}[S]}{K_m + [S]}$$

$$\frac{1}{V_0} = \frac{K_m}{V_{\max}[S]} + \frac{1}{V_{\max}}$$


But: Substrate is the "inhibitor"!

- NMR-studies of the CAL-B binding pattern
- Molecular modelling
- X-ray crystallography

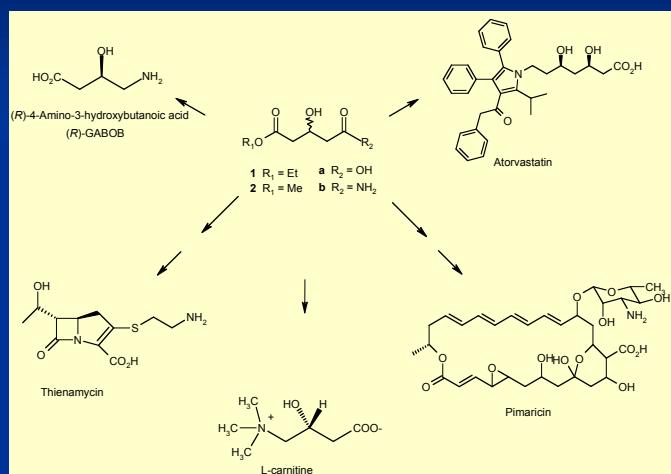
• Guo, Z.-W. and C.J. Sih, J. Am. Chem. Soc., 1989: 6836-6841.
 • Itoh, T., Ohira, E., Takagi, Y., Nishiyama, S., and Nakamura, K., Bull. Chem. Soc. Jpn., 1991. **64**: 624-627.
 • Ammon, R. and H. Fischgold, Biochem.Z, 1931. **234**: 54.

Building blocks for drugs by asymmetric synthesis

Atorvastatin: Tissue selective inhibitor of HMG-CoA Reductase

α -Chymotrypsin gave the *R*-configuration of the mono ester
 But: ee only 50 %

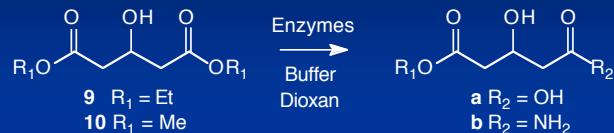
Enzyme catalyzed asymmetrisation of diesters of 3-hydroxyglutaric acid



Prod.	Enzyme	Activity	% ee	% yield	$[\alpha]_D^{20}$	Conf.
9a	CAL-B	7 PLU/mg	91	80	+ 1.8 (c11.5, acetone)	(S)
9a	CAL-A	91	77	+ 1.8 (c11.5, acetone)	(S)	
9a	CLEC-CAL-B	17 U/mg	86	80		(S)
9a	HLL		72	89		(S)
9a	RML	60 U/g	74	89		(S)
9a	PLE	15 U/mg	35	76	+ 0.2 (c 11.5, acetone)	(S)
9a	α -Chymotrypsin	70 U/mg	50	65		(R)
9a	<i>A. lwoffii</i> (cell cult.)		56			(S)
10a	CAL-B	7 PLU/mg	90	70	+ 0.8 (c11.5, acetone)	(S)
10a	PLE		22	75		(S)
10a	α -Chymotrypsin		45	59		(R)
10a	MCL	cell prep.	75	70		(S)
9b	CAL-B	7 PLU/mg	98	95	- 6.9 (c10.0, dioxan) - 6.5 (c1.3, CHCl ₃)	(S)
10b	CAL-B	7 PLU/mg	98	95	- 2.0 (c3.5, dioxan)	(S)

University of Bucharest
08.10.2019

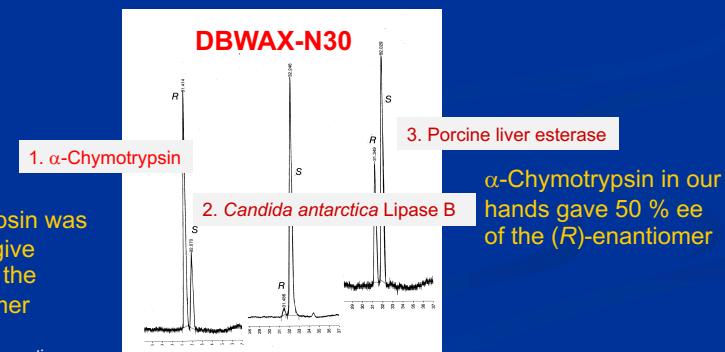
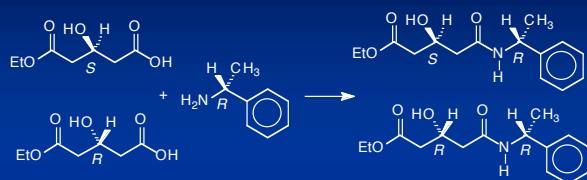
Jacobsen, E. E. et al, *J. Mol. Catal. B: Enz.* **2003**, 21, 55-58 43


Industrial use of enantiopure monoesters of of 3-hydroxyglutaric acid

University of Bucharest (S)-enantiomers also valuable synthons
08.10.2019

44

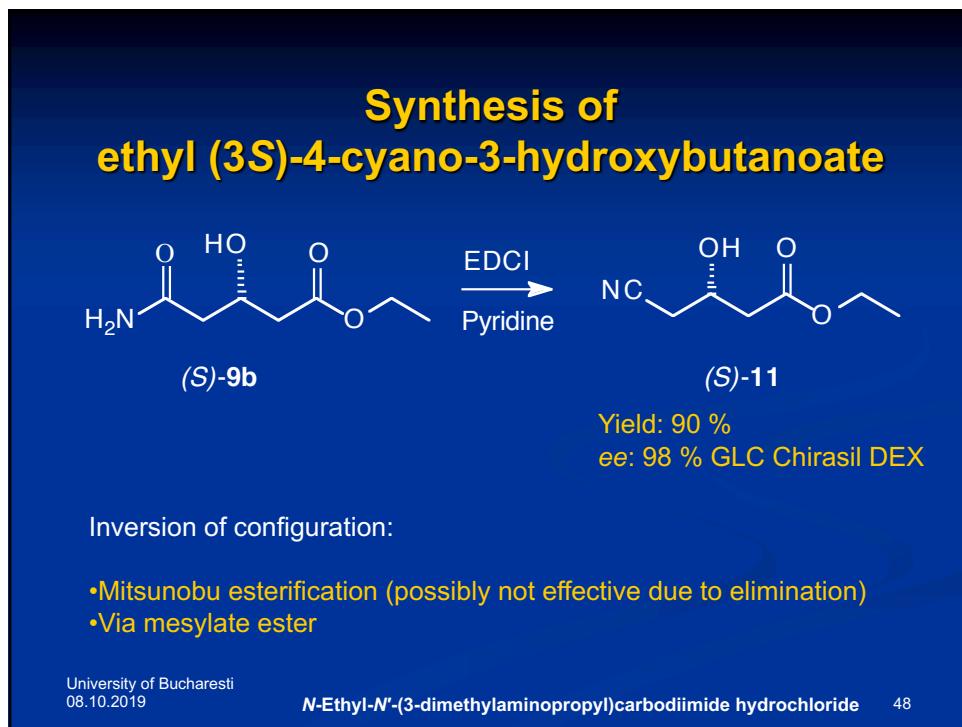
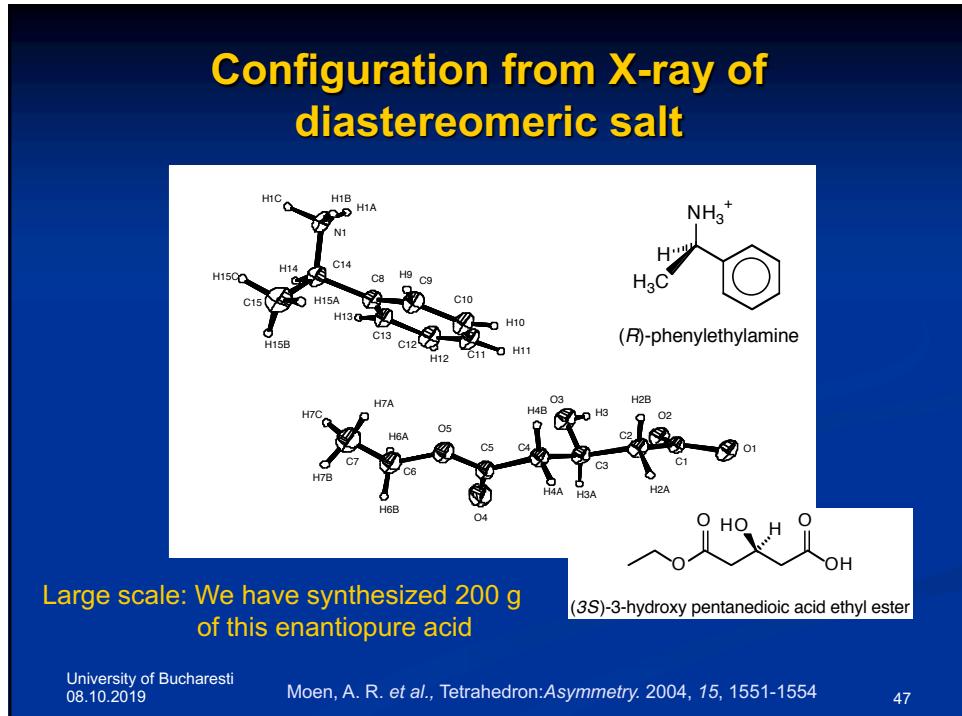
Hydrolysis vs. ammonolysis



Product	Enzyme	Medium	% ee	% yield	Config.
1a	CALB	Buffer	91	80	(S)
2a	CALB	Buffer	90	70	(S)
2a	PLE	Buffer	22	75	(S)
1b	CALB	Dioxane/NH ₃	98	95	(S)
2b	CALB	Dioxane/NH ₃	98	95	(S)

Ammonolysis gives better selectivity than hydrolysis
BUT: Dioxane not safe solvent

University of Bucharest
08.10.2019

45



GLC of diastereomeric derivatives

α -Chymotrypsin was reported to give 100 % ee of the (*R*)-enantiomer

University of Bucharest
08.10.2019

46

Conclusions I

(R)- and (S)-1-Phenoxy-2-butanol, (R)- and (S)-**1a**, and (R)- and (S)-1-benzyloxy-2-butanol, (R)- and (S)-**4a**, have been produced in gram scale by CAL-B catalysed esterifications in 99 % ee
(R)-1-Phenoxy-2-pentanol, (R)-**2a**, were produced in gram scale by CAL-B catalysed hydrolysis in 99 % ee

The enantioselectivity, *E*-value, depends on:

- ❖ the chain length and the electronegativity of the small substituent and also of the size of the large substituents in secondary alcohols
- ❖ the different acyl donors in transesterification reactions of 1-phenoxy-2-pentanol (**2a**) and 1-benzyloxy-2-butanol (**4a**)
- ❖ the water content and not water activity in polar solvents in esterifications of 3-bromo- and 3-chloro-1-phenoxy-2-propanol (**5a** and **6a**)